Difficulty ★★★★★ Popularity ★★★★★

-> You are given 2 eggs.

-> You have access to a 100-storey building.

-> Eggs can be very hard or very fragile means it may break if dropped from the first floor or may not even break if dropped from 100 th floor.Both eggs are identical.

-> You need to figure out the highest floor of a 100-storey building an egg can be dropped without breaking.

-> Now the question is how many drops you need to make. You are allowed to break 2 eggs in the process

Difficulty ★★★★☆ Popularity ★★★★☆

You can place weights on both side of weighing balance and you need to measure all weights between 1 and 1000. For example if you have weights 1 and 3,now you can measure 1,3 and 4 like earlier case, and also you can measure 2,by placing 3 on one side and 1 on the side which contain the substance to be weighed. So question again is how many minimum weights and of what denominations you need to measure all weights from 1kg to 1000kg.

Difficulty ★★★★☆ Popularity ★★★★☆

Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?

Difficulty ★★★☆☆ Popularity ★★★☆☆

How many times do a clock's hands overlap in a day ?

Difficulty ★★☆☆☆ Popularity ★★★☆☆

The puzzle is if the shopkeeper can only place the weights in one side of the common balance. For example if shopkeeper has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names the weights you will need to measure all weights from 1 to 1000. This is a fairly simple problem and very easy to prove also. Answer for this puzzle is given below.