**Maths Problem**

**- 10 May**

A worker is to perform work for you for seven straight days. In return for his work, you will pay him 1/7th of a bar of gold per day. The worker requires a daily payment of 1/7th of the bar of gold. What and where are the fewest number of cuts to the bar of gold that will allow you to pay him 1/7th each day?

**For Solution :**Click Here

2 The parts 1/7, 2/7, 4/7

ReplyDeleteYou cut the bar at 1/7 and 2/7 which leave a 4/7 bar left.

ReplyDeleteDay One: You make your first cut at the 1/7th mark and give that to the worker.

Day Two: You cut 2/7ths and pay that to the worker and receive the original 1/7th in change.

Day three: You give the worker the 1/7th you received as change on the previous day.

Day four: You give the worker 4/7ths and he returns his 1/7th cut and his 2/7th cut as change.

Day Five: You give the worker back the 1/7th cut of gold.

Day Six: You give the worker the 2/7th cut and receive the 1/7th cut back in change.

Day Seven: You pay the worker his final 1/7th.

Only two cut is needed to get 1/7, 2/7 and 4/7 parts.

ReplyDeleteThat depends on how well the worker can hold on to his earned gold, so he can use the earned bars as change :-)

ReplyDelete6

ReplyDelete